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ABSTRACT 

Post Processing of Optically Recognized Text Using  

First Order Hidden Markov Model 

by 

Spandana Malreddy 

Dr. Kazem Taghva, Examination Committee Chair 

Professor of Computer Science 

University of Nevada, Las Vegas 

 

In this thesis, we report on our design and implementation of a post processing  

system for Optically Recognized text. The system is based on first order Hidden Markov 

Model (HMM). The Maximum Likelihood algorithm is used to train the system with over 

150 thousand characters. The system is also tested on a file containing 5688 characters. 

The percentage of errors detected and corrected is 11.76% with a recall of 10.16% and 

precision of 100% 
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CHAPTER 1 

INTRODUCTION 

This thesis discusses Hidden Markov Model (HMM) to correct some of the Optical 

Character Recognition (OCR) errors. Hidden Markov Model consists of non-

deterministic process – markov chain. In 1906, a Russian mathematician named Andrey 

Andreyevich Markov introduced the markov chain while reporting results for a stochastic 

process [1]. Markov chain defines states which are hidden and the state transition 

probabilities. Markov process is estimating the state probability at a particular time 

depending on the state probability in the present. Later in 1960‟s Leonard E. Baum and 

others described Hidden Markov Model in the series of statistical papers. “Hidden 

Markov Model is a statistical Markov Model in which the system being modeled is 

assumed to be markov process with unobserved (hidden) states” [3]. The output of HMM 

is the most likely sequence of states with the given observations and other parameters.  In 

1970‟s the first application of HMM is Speech Recognition [3] and later in 1980‟s they 

were used in biological sequences [3] and then extends its applications to natural 

language modeling [1], gene predictions etc., 

In this thesis we will discuss about the two algorithms used in HMM which are Viterbi 

Algorithm and Maximum Likelihood Algorithm (MLE). During the teaching of 

information theory, Andrew Viterbi developed the Viterbi Algorithm in 1967. It helped 

him to prove an asymptotically optimum upper bound on error probability of error 

correcting codes rather than done on sequential codes. Viterbi Algorithm is used to find 

the most likely sequence path of the hidden states known as Viterbi path. The theory of 



www.manaraa.com

2 
 

MLE algorithm was developed for Bayesian statistics and then later simplified by other 

authors. Between 1912 and 1922, R. A. Fisher popularized the Maximum Likelihood 

Estimation algorithm. When we give a set of data as training data to a model, MLE 

algorithm is used to get the highest probabilities for the model parameters. 

OCR text is the text generated when text is scanned using OCR device. OCR device 

translate the handwritten or the printed text to data that will be in editable format. During 

this transition, the challenge is to translate the text which is in different format, style to 

the original text without errors. Kazem, Julie and Allen state that the initial step, scanning 

of text using OCR device is done by the optical scanner which uses the light intensity to 

characterize the grey levels and builds a matrix of 1‟s (for black) and 0‟s (for white) 

which represents a bit- mapped image [10]. In this process some of the characters are 

misrecognized causing the OCR errors. During the process of scanning, some of the 

characters are deleted, some of characters are inserted and some of them are wrongly 

recognized. The main idea is to consider HMM for correcting OCR errors as the output of 

HMM is the most likely sequence path of states when we give a set of characters which is 

the OCR text as training data. 

1.1 Thesis Overview 

HMM is used to correct the OCR error data. In our thesis OCR text is taken, trained with 

the HMM with some initial probabilities and then tested with the different set of text. The 

resulted output is the correction of text of OCR error data. Output is measured using  

recall and precision.  

http://en.wikipedia.org/wiki/Ronald_Fisher
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Chapter 2 provides a background of HMM. The 3 problems training, decoding and 

evaluation are explained in detail. Post processing and pre processing of data are also 

discussed .Chapter 3 gives a detailed explanation of HMM design and implementation. 

MLE (Maximum Likelihood Algorithm) and Viterbi Algorithm are discussed in this 

chapter. In chapter 4 we report our experiment results on various data using training file 

and test file. Results are reported using standard measures: recall and precision. Chapter 5 

concludes the thesis and also discusses the way to improve the performance of HMM 

including the future work. 
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CHAPTER 2 

BACKGROUND  

The design and implementation details of first order Hidden Markov Model (HMM) for 

optically recognized text are discussed in this thesis. The name “Hidden” is given to 

HMM as the states are hidden and the observations are visible. In first order HMM, the 

transition probabilities depends only on the previous state but not on the history of the 

process. HMM is defined by a set of five variables. 

The elements of HMM and their notation are discussed in detail in the following section.   

2.1 Elements of HMM 

HMM is characterized by defining it with 5 variable tuple (S, V, π, A, B).  

i. S is the number of states in a model. S= {s1, s2, s3, s4 ...sn}.  s1, s2, s3, s4 ...sn are the 

hidden states of model.   

ii. V is the observation symbols. V = {v1, v2, v3….vn}. v1, v2, v3….vn are the 

observation symbols of the states.    

iii. π is the initial state probabilities. π = { πi  }. Where  

πi  =  p[q1 = Si] , 1 ≤ i ≤ N  

          The initial state probabilities are the probabilities of states at time t = 1. 

iv. A is the probabilities of state transitions. 

                                A = { aij }, where 

                    aij = P(qt+1 = Sj |qt = Si), i ≥1 and j ≤ N 
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aij denotes the probability of state Si going to state Sj at a time t. Transition 

probabilities are independent of time. A denotes the array of state transition 

probabilities.  

v. B is the emission probabilities  

                               B = {bj(k)}, where  

                    bj(k) = P (vk at t | qt = sj)    1≤ j ≤ N and 1≤ k ≤ M 

bj(k) denotes the probability of symbol vk when state sj is entered at time t. Emission 

probabilities are also independent of time t. 

Generally the model parameters of HMM are denoted as λ = (A, B, π)  

2.2 Three problems of HMM 

HMM to be used in the real world application deals with three problems. These three 

problems are addressed based on the observation sequence and state sequence where 

O = {o1, o2, o3…ot} 

X = {x1, x2, x3…xt} 

O is the Observation sequence. Given the observation sequence, HMM calculates the 

most possible state sequence (X) based on this observation sequence. The three problems 

are  

 Evaluation Problem 

 Training Problem 

 Decoding problem 
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These three problems are discussed in detail: 

1. The evaluation Problem is used to find the probability of observations when the 

model parameters λ and observation set are given. Forward Algorithm is used to 

solve this problem. 

2. The training problem is mainly used to adjust the model parameters of HMM 

which gives the maximum probability of observation sequence. The input for 

this problem is the tag file consisting of states and symbols. The training 

process is important process of the system. When the system is trained with 

more data, the probabilities are recorded and the system works more accurate. 

Generally there are two ways of training data: supervised and unsupervised. In 

supervised training, Maximum Likelihood Estimation algorithm is used where 

the model is trained with the tag file with the states and corresponding symbols. 

Unsupervised training is done using Baum-Welch algorithm. Supervised 

training is used in this thesis.  

3. The decoding problem is used to find most probable sequence of states when we 

give observation sequence and model parameters λ. Viterbi algorithm is used to 

solve this problem. 

Evaluation problem is not addressed in this thesis. Training problem and decoding 

problem use a lot of dynamic programming and are discussed in detail in this thesis.   

We will now discuss the details of viterbi algorithm and Maximum Likelihood 

Estimation algorithm. These algorithms are explained using the mathematical equations 

and elements of HMM. 
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2.3 Viterbi Algorithm 

Viterbi algorithm is used to identify the hidden states of the model. Given observation 

sequence and model parameters, it helps to identify the most probable path for the states. 

Generally the most probable path is known as viterbi path. It is the best technique and 

involves a lot of dynamic programming to solve the decoding problem. It is the most used 

algorithm in recent cases. Viterbi algorithm uses trellis diagram for back tracking the 

path.   

Inputs: 

(a) States, S = { s1,s2,s3, … , sn } 

(b) Observation symbols, O =  {o1,o2,o3…, ok} 

(c) Transition matrix Aij. Aij stores the probability of transiting state si to sj. 

(d) Emission matrix Bik. Bik stores the probability of observation ok from state si. 

(e) Initial probabilities πi where πi stores the initial probabilities of state si. 

(f) Observation Sequence Y = {y1, y2, y3, … , yt } 

Outputs: 

δn(i) = max s1,s2,s3, … , sn p(s1,s2,s3, … , sn = si, y1, y2, y3, … , yt | O) 

ψn(i) = argmaxs1, s2, …sn  p(s1,s2,s3, … , sn = si, y1, y2, y3, … , yt | O) 

Steps in the algorithm: 

(i) Initialization 

δi(1) = πi . bi y1 , where i = 1, 2, 3, … N  

ψ1(i) = 0 
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(ii) Recursion 

δn(j) = max1≤ i ≤ N (δn-1(i). aij) . bj yn  , where i = 2,3, … N  and j = 1, 2, 3, … N 

ψn(j) = max1≤ i ≤ N (δn-1(i). aij) , where i = 2,3, … N  and j = 1, 2, 3, … N 

(iii) Termination 

P
* 
= max1≤ i ≤ N δN(i) 

q
*
 = argmax1≤ i ≤ N δN(i) 

Q
* 
is the optimal sequence, Q

* 
= {q1

*
, q2

*
, q3

*
, … , qn

*
} 

(iv) Backtracking  

qi
*
 = ψi+1(qi+1

*
) , where i = i-1, i -2, … , 1 

Backtracking is done using trellis diagram. Trellis diagram is used to visualize likelihood 

calculation of Hidden Markov Model. 

 

a13 

a12 

a11 

Time 

Sequence n = N n = 3 n = 2 n = 1 

b3k b3k b3k b3k 

b2k b2k b2k b2k 

b1k b1k b1k b1k 

State 3 

State 2 

State 1 

Figure 1: Trellis Diagram 
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Each column in the trellis diagram shows the possible states at a certain time t. Each state 

in one column is connected to each state in adjacent columns by the transition likelihood 

given by the elements aij of the transition matrix A. At the bottom of trellis diagram is the 

observation sequence Y = y1, y2, y3, … , yn . bik is the likelihood of the observation. yn = 

yk in state sn = si at time n. 

2.4 Maximum Likelihood Estimation Algorithm  

Maximum likelihood algorithm is used to calculate the model parameters. Model 

parameters include choosing λ = (π, A, B) where π is the initial probabilities of states, A 

is the transition matrix calculating the transition probabilities and B is the emission 

matrix calculating the emission probabilities. Tag file is given as input to calculate these 

model parameters. Using the tag file, MLE algorithm calculates the count of transitions 

from one state to other state and also emission of a symbol by a state at time t. Emission 

probabilities and transition probabilities are calculated using the count of transitions and 

emissions. As probabilities are calculated using training data, MLE algorithm is called 

supervised training. 

Aij = Number of transitions from state si to state sj in the training data 

            Total number of transitions from state si in the training data 

Bi(j) = Number of emissions of symbol j from state si in the training data 

                Total number of emissions from state si in the training data 

 

 



www.manaraa.com

10 
 

2.4.1 Smoothing 

During the calculation of Aij (Transition probabilities) and Bi(j) (Emission probabilities), 

there might not be transitions and emissions for some of the states which results in zero 

probabilities. Zero probabilities cause the problems in the mathematical calculations. To 

avoid this problem smoothing techniques are used. Some of the smoothing techniques are  

 Absolute Discounting 

 Laplace Smoothing 

 Good-Turing Estimation 

 Shrinkage 

2.4.1.1 Laplace Smoothing 

In this thesis we use Laplace smoothing to assign the probabilities with zero emission and 

transition probabilities. Laplace smoothing is known as add-on smoothing technique. In 

this smoothing technique, one is added to the numerator and vocabulary size is added to 

the denominator. 

P(X | S) =     N(X | S) + 1 

                      N(S) + |V| 

Where N(X | S) is the number of times symbol X is emitted at state S 

N(S) is the number of times symbols emitted by state S. 

|V| = Vocabulary size 
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Example: If you throw a dice 6 times and each time the score on the dice is 5. So the 

probability of dice showing 2 is zero. In this situation we use Laplace smoothing to 

assign a probability of dice showing 2. 

P(2 | 6) = N( 2 | 6) + 1       

                N(6) + |V| 

         = (0 + 1) / (6 + 6)  

         = 0.08 

Where N(2 | 6) = Number of times dice showing 2 of 6 chances 

N(6) = Number of times dices was showing a number during 6 chances 

|V| = Vocabulary size 

The probability of showing 2 on dice out of 6 chances is zero previously and after 

Laplace smoothing the value has changed to 0.08. 

2.5 OCR Error Classifications 

Some characters are misrecognized during the scanning of a document to editable format 

using OCR device. These misrecognized characters are called OCR errors. OCR errors 

are classified based on the errors occurred due to insertion, deletion and substitution 

errors. 

a. Insertion errors: These types of errors are occurred when there is no actual 

character but during the scanning process a character is inserted. 
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b. Deletion errors: These types of errors are occurred when there is a character but 

during the scanning process the character is deleted. 

c. Substitution errors: These types of errors are occurred when there is a character 

but during the scanning process the actual character is replaced with some other 

character. 

Substitution errors are further divided based on the number of characters substituted. 

They are 

i. One to one: One character is replaced with one character 

ii. Two to one: Two characters are replaced with a single character 

iii. One to two: One character is replaced with two characters. 

Some of the OCR errors are shown below: 

S. No Actual Character OCR recognized 

( OCR error) 

1 f t 

2 r x 

3 ll u 

4 ci d 

5 l f 

6 iu ur 

7 g c 

8 u o 
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9 f l 

10 v r 

11 h b 

12 el d 

Table 1: Some of the OCR Errors 

2.6 HMM Example 

2.6.1 Weather Prediction Experiment 

According to Rabiner, the three types of weather considered are: “Sunny (S), Rainy (R) 

and Foggy (F)” [6]. We want to do weather prediction i.e., predicting the weather of 

tomorrow based on the observations in the past. Statistics are collected based on the 

weather like today (day n) depending on the weather of yesterday (day n-1), the day 

before (day n-2) etc., state qn is associated to day n and qn-1 to day n-1. 

Suppose we have statistics for the weather for 3 days: sunny, sunny, and foggy. The 

probability of tomorrow being rainy is calculated by P(q4 = R | q3 = F, q2 = S, q1 = S). 

This could be inferred from the relative frequencies from the past observations of weather 

sequences “S S F R”. Statistics can be collected for small data easily, but as the number 

increase the data also increases. Suppose n = 7 then we need to collect 3
7-1

 = 729 past 

observations. 

This can be solved by first order Markov assumption. Assumption is such that 

P(q1, q2, q3, … , qn-1, qn) = P(q1, q2, … ,qn-1) P(qn|qn-1, qn-2, …. , q1) 

Experiment: Suppose a person is locked in a room for several days and was asked to  
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predict the weather outside. The only evidence is that a person who comes in to the room 

bringing daily meals to the person in the room is carrying an umbrella or not. Suppose the 

person in the room has the probabilities: 

Weather Probability of carrying umbrella 

Sunny 0.1 

Rainy 0.8 

Foggy 0.3 

Table 2: Probabilities of carrying umbrella on different weather 

 Here, actual weather is hidden. We need to find the probability of certain weather. qi = 

{S, R, F} can only be based on P(xi | qi) = P(U | qi) on the observation xi with xi = U (if 

the person who brings the food brought an umbrella) and xi = N (otherwise). 

By Baye‟s theorem P (qi | xi ) = p(xi | qi) p(qi) 

                                                      p(xi)         

P(q1, q2, … , qn | x1, x2, … , xn) = P(x1, x2, … , xn | q1, q2, …qn) P(q1, q2,…qn)     

                                                                           P(x1, x2, … , xn) 

Using Markov assumption, 

= P(x1, x2, … , xn | q1, q2, …qn) can be estimated by πi=1 to nP(x1 | qi) 

In general,  

 P(q1, q2, … , qn | x1, x2, … , xn) = _  (q1, q2, … , qn | x1, x2, … , xn) =  

πi=1 to nP(xi | qi) πi=1 to nP(qi | qi-1) 
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Question: Suppose the day the person locked in the room was sunny. The next day, the 

person who brings food carried an umbrella. What is the weather like on this 2
nd

 day? 

Solution:  

_(q2 = S |q1 = S, x2 = U) = P(x2 = U | q2 = S) * P(q2 =S|q1 =S) 

       = 0.1 * 0.8  

       = 0.08 

_(q2 = R |q1 = S, x2 = U) = P(x2 = U | q2 = R) * P(q2 =R|q1 =S) 

                                       = 0.8 * 0.05 

                                       = 0.04 

_(q2 = F |q1 = S, x2 = U) = P(x2 = U | q2 = F) * P(q2 =F|q1 =S) 

                                      = 0.3 * 0.15 

         = 0.045 

S F 

R 

0.8 
0.5 

0.6 

0.15 

0.2 

0.3 

0.2 

0.05 

0.2 

U = 0.3 

 

 

 

N = 0.7 

U = 0.1 

 

 

 

U = 0.8 

 

 

 

N = 0.2 

N = 0.9 

Figure 2: Example showing state transition diagram 
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Based on the calculations above, the highest probability is observed when state is sunny. 

Even though the person carried an umbrella, the weather is sunny based on the 

calculations of probabilities and history provided. In the above example, states (actual 

weather) are hidden and based on the previous history; the observation sequence is found 

using first order hidden markov model. 
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CHAPTER 3 

DESIGN AND IMPLEMENTATION 

In this thesis, we train HMM with OCR data. The code is written in Java language to 

implement the MLE algorithm and Viterbi algorithm. Our HMM model has 26 states: a-z 

alphabets. In our thesis, training and decoding steps of HMM are implemented. The tag 

file given to HMM during training consists of OCR error data and correct data. Then as a 

part of the decoding step, a test file is given with the OCR error data to correct the OCR 

errors. In order to train and test our model, we have taken a book form online (Notes on 

witchcraft by George Lyman Kittredge) consisting of 60 pages. We have collected the 

OCR version and correct version of the book. For training, we have used 55 pages 

(159,733 characters) and 5 pages (5688 characters) are used for testing. Errors in the 

OCR version of book are listed in the appendix.  

Our code implementation has 3 files: Main file, MLE algorithm implementation and 

Viterbi algorithm implementation. During the process, two files with OCR error data and 

correct data are given as input to the main file. The data is preprocessed and a tag file is 

created. The tag file is then given as input to MLE algorithm implementation. The output 

of MLE algorithm implementation is the model file consisting of initial probabilities, 

emission probabilities and transition probabilities. The model file, which is the output of 

MLE algorithm implementation and a test file consisting of OCR error data are sent as 

input to Viterbi algorithm. Based on the probabilities in the model file, the most likely 

sequence path for the test file is generated as output for the HMM model. The more the 
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training data, the probabilities for transition of states are recorded and improves the 

performance of HMM for correcting the errors. 

3.1 Preprocessing Data  

During the preprocessing step, OCR error data and correct data are taken. This data is 

preprocessed such that the data consisting of special characters (*, $ etc.,) and numbers 

are deleted and formatted to align correctly in the tag file. 

Sample input text that is used for training purpose is shown below. This training data is 

used to create a tag file. All the special characters are removed during this step. 

 Correct data 

 

Figure 3: Screenshot of sample correct data 
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 OCR error data

 

 

Figure 4: Screenshot of sample OCR error data 

 

After the preprocessing step, the tag file is created. Correct text data are states and the 

OCR error data are taken as corresponding symbols to the states.  

The sample tag file is shown below: 

 

Figure 5: Screenshot of sample tag file 
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3.2 Learning Module 

The main objective of this module is to use the Maximum Likelihood algorithm to get the 

initial probabilities, emission probabilities and transition probabilities. Three hash table 

data structures are used to store theses three variables. MLE algorithm implementation 

takes the input as tag file and calculates the model parameters λ = (π, A, B) where π is the 

initial probabilities for the states, A represents the transition probabilities and B 

represents the emission probabilities. The hash table is used to store the initial 

probabilities in our code. The initial probabilities are assigned to each state with some 

probabilities. Based on the tag file, the initial probability for start state is assigned a 

higher probability than the other states. Initial probabilities are assigned to the states by 

dividing the probabilities with the number of states in the model.    

Transition probabilities are calculated based on the state‟s transitions to other states at a 

time (t). In our code, the probabilities are calculated by storing the occurrences of 

transitions from state si to state sj in a hash table data structure. If the transition of 

occurrence has already been calculated, then a value is added to the present occurrence 

and a new probability is re-calculated. Transition probabilities are calculated as the 

number of transitions from state si to sj divided by the total number of transitions of state 

si. . These transitions are calculated using the correct data.  

The transition probabilities are calculated using the tag file. The characters to the left in 

the tag file are the states and the characters to the right are symbols. Each line is parsed 

one at a time; for transition probabilities, only the states are considered. Counters are set 

up to keep track of the number of times each state (a-z) is transited to state (a-z) 
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combination. Every time the combination is repeated the counter is incremented by 1 and 

stored in the hash table or else new entry is added in the hash table. 

The emission probabilities are calculated based on the emissions of the symbols by states. 

In our code we count the number of occurrences of emissions of each symbol by a state 

in a hash table and check each line in the tag file and add a value if the same symbol by a 

same state occurs or else new entry is added in the hash table. Emission probabilities are 

calculated by the number of emissions of a symbol „o‟ with state „si‟ divided by the 

number of emissions from the state „si‟.  

Initial probabilities, transition probabilities and emission probabilities are calculated and 

stored in a model file. The output for the MLE algorithm implementation is the model file 

which stores the initial probabilities, transition probabilities and emission probabilities. 

The model file has the probabilities of each state transition and the symbol emission from 

the state. The model file in our model has following: states, initial probabilities for states, 

emission probabilities and transition probabilities. States are a-z (26 characters). The 

initial probabilities are assigned by dividing with 26 and the start state is assigned more 

probability based on the tag file. 

During these calculations, some of the emission probabilities are assigned a zero 

probability as they are not seen in the training data which causes problems in further 

calculations. To avoid this problem we used smoothing technique discussed in the 

chapter 2. 
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3.3 Decoding Module 

The main goal of this module is to find the most likely sequence path for the test file, 

which is given as input. The viterbi algorithm is used to find the most likely sequence 

path. The input parameters for viterbi algorithm implementation are taken from the model 

file, which is the output from MLE algorithm implementation. “Argmax” and “valmax” 

parameters are calculated using the recursion step to find the most likely sequence of 

states for a given observation sequence. Logarithmic calculations are used for the 

multiplication of numbers as the probabilities of multiplications of the numbers are very 

minute. In our code, we have two variables: argmax, which is a string data type to store 

the trellis path and valmax to store the values calculated in each iteration step. 

The start probabilities of every state are calculated by the step: T[i].pr = log10 (Init[i]) + 

log10 (B[i]) where Init[i] is the probability that i is in the start state and B[i] is the 

emission probability associated with state i. 

A for loop is used for the recursive step. The recursive step is implemented to find the 

most likely sequence using the formula:  

Path = T[i].pr + log10 (A[i][j]) + log10 (B[i])  where T[i] is the probability of current 

path till state i and A[i][j] is the transition probability from state i to state j. B[i] is same 

as stated above. 

While loop is used to perform the calculations till the end of the file and the output 

generated is the most likely sequence path of the test file. 
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3.4 Main file 

The program implementation starts from main file. The two files with the OCR error data 

and correct data are given as inputs to the main file. The pre-processed data is generated. 

Objects for MLE class and viterbi class are created. The tag file is given as input variable 

to create a model file. The parameters from the model file such as emission probabilities, 

transition probabilities, start probabilities and states are given to viterbi. Viterbi is then 

processed with the observation sequence file (test file) and output is stored in corrected 

file.   
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CHAPTER 4 

EXPERIMENTS AND RESULT 

This chapter explains the experiments conducted with our HMM model and the results 

obtained. For training our HMM model, we have taken a book from online (Notes on 

witchcraft by George Lyman Kittredge) consisting of 60 pages. Out of 60 pages, we have 

used 55 pages (159,733 characters) for training and 5 pages for testing (5688 characters). 

Each page out of 5 pages is used for 5 test cases.  

Page and character count for each test file is tabulated below:   

File Number of pages character count 

File 1 1 913 

File2 1 887 

File3 1 757 

File4 1 966 

File5 1 1002 

Table 3: Table showing the character count for the test files 

Performance of HMM is evaluated by standard measures: Recall and Precision. Recall 

and precision are calculated using Truth Positive, Truth Negative, False Positive, and 

False Negative. 

True Positive: These are the number of misspelled characters that are identified by the 

system and corrected.  
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True Negative: These are the number of correct characters that are identified by the 

system and remain the same.  

False Positive: These are the number of correct characters that are changed and wrongly 

spelled by the system.  

False Negative: These are the number of misspelled characters that are not corrected by 

the system.  

Precision =                          True Positive 

                                  True Positive + False Positive 

Recall =                               True Positive 

                               True Positive + False Negative 

Results of each file are tabulated below: 

 

 

 

 

 

Our HMM model was able to recognize and correct 4 out of 34 misspelled characters.  

Average Recall = 10.16 % 

Test File  

(characters) 

TN 

 

FP 

 

TP 

 

FN 

 

Recall 

TP/(TP+FN) 

Precision 

TP/(TP+FP) 

File 1 (913) 904 0 1 8 11.11% 100.00% 

File 2 (887) 880 0 2 5 28.57% 100.00% 

File 3 (757) 748 0 1 8 11.11% 100.00% 

File 4 (966) 961 0 0 5 0.00% 100.00% 

File 5 

(1002) 

997 0 0 4 0.00%      100.00% 

Average 10.16% 100.00% 

Table 4: Results showing the Recall and Precision for each test file 
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Average Precision = 100.00 % 

Word Accuracy is used as another measure for the performance measure of HMM for 

correcting the OCR error data. Word Accuracy is determined as defined by [5] 

Word Accuracy =     Number of words recognized correctly 

                                          Total number of words 

Word accuracy for each test case is tabulated below: 

File Total 

no. of words 

No. of words 

recognized correctly 

Word 

Accuracy 

File1 201 193 96.02% 

File2 174 169 97.13% 

File3 154 146 94.81% 

File4 206 201 97.57% 

File5 198 194 97.78% 

Total(File1-File5) 933 903 96.78% 

 

Word Accuracy before correcting errors = Number of words recognized correctly 

                                                                                  Total number of words 

                                                                  = 899/933  

           = 96.36 % 

Word Accuracy after correcting errors = 96.78 % 
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Our HMM was able to increase 0.42 % word accuracy with a recall of 10.16% and 

precision of 100 %. Based on the training provided, HMM was able to correct the errors 

which are seen most in the training data. 

Our 1
st
 order HMM was able to detect and correct 11.76% (4 out of 34) errors and 

precision is 100% as it is not introducing any new errors. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The objective of this thesis is to use HMM to correct the errors generated during the OCR 

scanning process. We designed the HMM, implemented the Maximum Likelihood 

Algorithm and the Viterbi Algorithm. The experiments we conducted have 55 pages of 

data for training and 5 pages for testing. The results obtained show that the 1
st
 order 

HMM model was able to correct very few errors with a recall of 10.16% and precision of 

100%. 

In future work, we can implement the 2
nd

 order HMM model where bi- grams are used to 

calculate the transition probabilities and the emission probabilities. The results of 1
st
 

order HMM model can be compared with 2
nd

 order HMM and the model that gives the 

best results can be used for correcting the OCR errors. 
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APPENDIX 

This Appendix provides all the misspelled characters that are recorded in the OCR 

version of the online book “Notes on witchcraft by George Lyman Kittredge”. Table 

below shows the errors and the number of times the error had occurred in the book. 

Error Occurrence 

b -> e 1 

r->s 2 

h->ii 1 

m->ni 5 

al->ri 1 

um->im 2 

rm->nn 4 

g->s 3 

el->d 2 

is->d 2 

ll->u 2 

ri->ii 3 

r->ir 2 

y->rs 1 

s->nd 1 

f->t 4 

a->u 3 

ci->d 2 

rn->m 2 

l->f 2 

t->l 1 

r->x 5 

z->s 2 

a->z 4 

in->m 2 

c->e 7 

r->l 3 

f->t 2 

f->l 1 

iu ->ur 1 

h -> b 2 

g ->c 3 

rc ->n 1 

y -> j 1 

a -> u 2 
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Error Occurrence 

v -> r 1 

r -> e 2 

e-> r 2 

el -> ri 1 

x->z 2 

u->o 1 

v -> y 1 

in ->m 1 

l -> j 2 

e -> t 2 

f ->i 5 

a-> o 10 

l-> i 8 

n -> m 3 

e -> u 1 

l -> i 1 

m -> x 1 

y -> jr 1 

u -> y 1 

g -> s 1 

e -> r 1 

t -> i 2 

y -> s 1 

si -> m 1 

a -> f 1 

r -> i 1 

nr -> m 1 

s -> i 1 

c -> o 2 

l -> i 2 

o -> c 1 

in -> m 1 

m -> n 2 

x -> i 3 

v -> u 2 

j -> i 1 

e -> o 1 

f -> i 1 

in -> m 2 

im -> un 1 

ir -> n 1 

i -> l 1 

a -> c 1 
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Error Occurrence 

a ->e 1 

c -> o 1 

n -> ii 3 

ii -> n 2 

im -> un 1 

g -> s 1 

v -> y 1 

s -> a 2 

r ->x 3 

f -> l 1 

u->i 1 

m -> n 1 

r -> d 1 

s -> e 1 

a -> o 3 

l -> n 1 

u -> v 1 

v -> u 1 

e -> o 1 

f -> i 1 

u -> m 1 

h -> i 1 

il -> u 1 

hi -> tu 1 

rn -> m 2 

ii -> ni 1 

ii -> ri 1 

on->cm 1 

ek->dc 1 

sc -> ao 1 

um -> im 1 

si -> no 1 

iu -> ur 1 

re -> fc 1 

el -> ri 1 

im - > un 1 
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