
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

12-1-2012

Post Processing of Optically Recognized Text using First Order Post Processing of Optically Recognized Text using First Order

Hidden Markov Model Hidden Markov Model

Spandana Malreddy
University of Nevada, Las Vegas, spandana.4160@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Malreddy, Spandana, "Post Processing of Optically Recognized Text using First Order Hidden Markov
Model" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1753.
https://digitalscholarship.unlv.edu/thesesdissertations/1753

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1753?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

POST PROCESSING OF OPTICALLY RECOGNIZED TEXT USING

FIRST ORDER HIDDEN MARKOV MODEL

by

Spandana Malreddy

Bachelor of Engineering, Computer Science

Jawaharlal Nehru Technological University, India

 2009

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2012

www.manaraa.com

Copyright by Spandana Malreddy, 2012
All Rights Reserved

www.manaraa.com

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Spandana Malreddy

entitled

Post Processing of Optically Recognized Text Using First Order Hidden

Markov Model

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Venkatesan Muthukumar, Graduate College Representative

Thomas Piechota., Interim Vice President for Research and Graduate Studies

and Dean of the Graduate College

December 2012

www.manaraa.com

iii

ABSTRACT

Post Processing of Optically Recognized Text Using

First Order Hidden Markov Model

by

Spandana Malreddy

Dr. Kazem Taghva, Examination Committee Chair

Professor of Computer Science

University of Nevada, Las Vegas

In this thesis, we report on our design and implementation of a post processing

system for Optically Recognized text. The system is based on first order Hidden Markov

Model (HMM). The Maximum Likelihood algorithm is used to train the system with over

150 thousand characters. The system is also tested on a file containing 5688 characters.

The percentage of errors detected and corrected is 11.76% with a recall of 10.16% and

precision of 100%

www.manaraa.com

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Dr. Kazem Taghva for his

excellent guidance, patience and invaluable support throughout my thesis work. I am

grateful to my graduate coordinator, Dr. Ajoy K Datta for his support and help during my

masters. I extend my gratitude to my thesis committee members Dr. Laxmi P. Gewali,

Dr.Ajoy K Datta and Dr. Venkatesan Muthukumar for their encouragement and insightful

comments. I would also like to thank staff of school of computer science for their

assistance during my masters.

My special gratitude goes to my family and friends who have always supported,

encouraged and believed in me in all my endeavors.

www.manaraa.com

v

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………...iii

ACKNOWLEDGEMENTS.……………………………………………………………...iv

TABLE OF CONTENTS……………………………………………………………….....v

LIST OF FIGURES………………………………………………………………………vi

CHAPTER 1 INTRODUCTION………………………………………………………….1

1.1 Thesis Overview…………………………………………………………………...2

 CHAPTER 2 BACKGROUND…………………………………………………………..4

 2.1 Elements of HMM………………………………………………………………...4

 2.2 Three problems of HMM………………………………………………………….5

 2.3 Viterbi Algorithm………………………………………………………………….7

 2.4 Maximum Likelihood Estimation Algorithm..……………………………………9

 2.4.1 Smoothing……………………………………………………………………...10

 2.4.1.1 Laplace Smoothing………………………………………………………..10

 2.5 OCR Error Classifications……………………………………………………….11

 2.6 HMM Example…………………………………………………………………..13

 2.6.1 Weather Prediction Example………………………………………………..13

CHAPTER 3 DESIGN AND IMPLEMENTATION……………………………………17

 3.1 Preprocessing Data………………………………………………………………18

 3.2 Learning Module…………………………………………………………………20

 3.3 Decoding Module………………………………………………………………...22

 3.4 Main file………………………………………………………………………….23

CHAPTER 4 EXPERIMENTS AND RESULTS……………………………….……….24

CHAPTER 5 CONCLUSION AND FUTURE WORK…………………………………28

APPENDIX………………………………………………………………………………29

BIBILOGRAPHY……………………………………………………………….……….32

VITA……………………………………………………………………………………..34

www.manaraa.com

vi

LIST OF FIGURES

Figure 1 Trellis Diagram………………………………………………………………….8

Figure 2 Weather prediction example showing state transitions………………………...15

Figure 3 Screenshot of sample correct data……………………………………………...18

Figure 4 Screenshot of sample OCR error data………………………………………….19

Figure 5 Screenshot of sample tag file…………………………………………………...19

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

This thesis discusses Hidden Markov Model (HMM) to correct some of the Optical

Character Recognition (OCR) errors. Hidden Markov Model consists of non-

deterministic process – markov chain. In 1906, a Russian mathematician named Andrey

Andreyevich Markov introduced the markov chain while reporting results for a stochastic

process [1]. Markov chain defines states which are hidden and the state transition

probabilities. Markov process is estimating the state probability at a particular time

depending on the state probability in the present. Later in 1960‟s Leonard E. Baum and

others described Hidden Markov Model in the series of statistical papers. “Hidden

Markov Model is a statistical Markov Model in which the system being modeled is

assumed to be markov process with unobserved (hidden) states” [3]. The output of HMM

is the most likely sequence of states with the given observations and other parameters. In

1970‟s the first application of HMM is Speech Recognition [3] and later in 1980‟s they

were used in biological sequences [3] and then extends its applications to natural

language modeling [1], gene predictions etc.,

In this thesis we will discuss about the two algorithms used in HMM which are Viterbi

Algorithm and Maximum Likelihood Algorithm (MLE). During the teaching of

information theory, Andrew Viterbi developed the Viterbi Algorithm in 1967. It helped

him to prove an asymptotically optimum upper bound on error probability of error

correcting codes rather than done on sequential codes. Viterbi Algorithm is used to find

the most likely sequence path of the hidden states known as Viterbi path. The theory of

www.manaraa.com

2

MLE algorithm was developed for Bayesian statistics and then later simplified by other

authors. Between 1912 and 1922, R. A. Fisher popularized the Maximum Likelihood

Estimation algorithm. When we give a set of data as training data to a model, MLE

algorithm is used to get the highest probabilities for the model parameters.

OCR text is the text generated when text is scanned using OCR device. OCR device

translate the handwritten or the printed text to data that will be in editable format. During

this transition, the challenge is to translate the text which is in different format, style to

the original text without errors. Kazem, Julie and Allen state that the initial step, scanning

of text using OCR device is done by the optical scanner which uses the light intensity to

characterize the grey levels and builds a matrix of 1‟s (for black) and 0‟s (for white)

which represents a bit- mapped image [10]. In this process some of the characters are

misrecognized causing the OCR errors. During the process of scanning, some of the

characters are deleted, some of characters are inserted and some of them are wrongly

recognized. The main idea is to consider HMM for correcting OCR errors as the output of

HMM is the most likely sequence path of states when we give a set of characters which is

the OCR text as training data.

1.1 Thesis Overview

HMM is used to correct the OCR error data. In our thesis OCR text is taken, trained with

the HMM with some initial probabilities and then tested with the different set of text. The

resulted output is the correction of text of OCR error data. Output is measured using

recall and precision.

http://en.wikipedia.org/wiki/Ronald_Fisher

www.manaraa.com

3

Chapter 2 provides a background of HMM. The 3 problems training, decoding and

evaluation are explained in detail. Post processing and pre processing of data are also

discussed .Chapter 3 gives a detailed explanation of HMM design and implementation.

MLE (Maximum Likelihood Algorithm) and Viterbi Algorithm are discussed in this

chapter. In chapter 4 we report our experiment results on various data using training file

and test file. Results are reported using standard measures: recall and precision. Chapter 5

concludes the thesis and also discusses the way to improve the performance of HMM

including the future work.

www.manaraa.com

4

CHAPTER 2

BACKGROUND

The design and implementation details of first order Hidden Markov Model (HMM) for

optically recognized text are discussed in this thesis. The name “Hidden” is given to

HMM as the states are hidden and the observations are visible. In first order HMM, the

transition probabilities depends only on the previous state but not on the history of the

process. HMM is defined by a set of five variables.

The elements of HMM and their notation are discussed in detail in the following section.

2.1 Elements of HMM

HMM is characterized by defining it with 5 variable tuple (S, V, π, A, B).

i. S is the number of states in a model. S= {s1, s2, s3, s4 ...sn}. s1, s2, s3, s4 ...sn are the

hidden states of model.

ii. V is the observation symbols. V = {v1, v2, v3….vn}. v1, v2, v3….vn are the

observation symbols of the states.

iii. π is the initial state probabilities. π = { πi }. Where

πi = p[q1 = Si] , 1 ≤ i ≤ N

 The initial state probabilities are the probabilities of states at time t = 1.

iv. A is the probabilities of state transitions.

 A = { aij }, where

 aij = P(qt+1 = Sj |qt = Si), i ≥1 and j ≤ N

www.manaraa.com

5

aij denotes the probability of state Si going to state Sj at a time t. Transition

probabilities are independent of time. A denotes the array of state transition

probabilities.

v. B is the emission probabilities

 B = {bj(k)}, where

 bj(k) = P (vk at t | qt = sj) 1≤ j ≤ N and 1≤ k ≤ M

bj(k) denotes the probability of symbol vk when state sj is entered at time t. Emission

probabilities are also independent of time t.

Generally the model parameters of HMM are denoted as λ = (A, B, π)

2.2 Three problems of HMM

HMM to be used in the real world application deals with three problems. These three

problems are addressed based on the observation sequence and state sequence where

O = {o1, o2, o3…ot}

X = {x1, x2, x3…xt}

O is the Observation sequence. Given the observation sequence, HMM calculates the

most possible state sequence (X) based on this observation sequence. The three problems

are

 Evaluation Problem

 Training Problem

 Decoding problem

www.manaraa.com

6

These three problems are discussed in detail:

1. The evaluation Problem is used to find the probability of observations when the

model parameters λ and observation set are given. Forward Algorithm is used to

solve this problem.

2. The training problem is mainly used to adjust the model parameters of HMM

which gives the maximum probability of observation sequence. The input for

this problem is the tag file consisting of states and symbols. The training

process is important process of the system. When the system is trained with

more data, the probabilities are recorded and the system works more accurate.

Generally there are two ways of training data: supervised and unsupervised. In

supervised training, Maximum Likelihood Estimation algorithm is used where

the model is trained with the tag file with the states and corresponding symbols.

Unsupervised training is done using Baum-Welch algorithm. Supervised

training is used in this thesis.

3. The decoding problem is used to find most probable sequence of states when we

give observation sequence and model parameters λ. Viterbi algorithm is used to

solve this problem.

Evaluation problem is not addressed in this thesis. Training problem and decoding

problem use a lot of dynamic programming and are discussed in detail in this thesis.

We will now discuss the details of viterbi algorithm and Maximum Likelihood

Estimation algorithm. These algorithms are explained using the mathematical equations

and elements of HMM.

www.manaraa.com

7

2.3 Viterbi Algorithm

Viterbi algorithm is used to identify the hidden states of the model. Given observation

sequence and model parameters, it helps to identify the most probable path for the states.

Generally the most probable path is known as viterbi path. It is the best technique and

involves a lot of dynamic programming to solve the decoding problem. It is the most used

algorithm in recent cases. Viterbi algorithm uses trellis diagram for back tracking the

path.

Inputs:

(a) States, S = { s1,s2,s3, … , sn }

(b) Observation symbols, O = {o1,o2,o3…, ok}

(c) Transition matrix Aij. Aij stores the probability of transiting state si to sj.

(d) Emission matrix Bik. Bik stores the probability of observation ok from state si.

(e) Initial probabilities πi where πi stores the initial probabilities of state si.

(f) Observation Sequence Y = {y1, y2, y3, … , yt }

Outputs:

δn(i) = max s1,s2,s3, … , sn p(s1,s2,s3, … , sn = si, y1, y2, y3, … , yt | O)

ψn(i) = argmaxs1, s2, …sn p(s1,s2,s3, … , sn = si, y1, y2, y3, … , yt | O)

Steps in the algorithm:

(i) Initialization

δi(1) = πi . bi y1 , where i = 1, 2, 3, … N

ψ1(i) = 0

www.manaraa.com

8

(ii) Recursion

δn(j) = max1≤ i ≤ N (δn-1(i). aij) . bj yn , where i = 2,3, … N and j = 1, 2, 3, … N

ψn(j) = max1≤ i ≤ N (δn-1(i). aij) , where i = 2,3, … N and j = 1, 2, 3, … N

(iii) Termination

P
*
= max1≤ i ≤ N δN(i)

q
*
 = argmax1≤ i ≤ N δN(i)

Q
*
is the optimal sequence, Q

*
= {q1

*
, q2

*
, q3

*
, … , qn

*
}

(iv) Backtracking

qi
*
 = ψi+1(qi+1

*
) , where i = i-1, i -2, … , 1

Backtracking is done using trellis diagram. Trellis diagram is used to visualize likelihood

calculation of Hidden Markov Model.

a13

a12

a11

Time

Sequence n = N n = 3 n = 2 n = 1

b3k b3k b3k b3k

b2k b2k b2k b2k

b1k b1k b1k b1k

State 3

State 2

State 1

Figure 1: Trellis Diagram

www.manaraa.com

9

Each column in the trellis diagram shows the possible states at a certain time t. Each state

in one column is connected to each state in adjacent columns by the transition likelihood

given by the elements aij of the transition matrix A. At the bottom of trellis diagram is the

observation sequence Y = y1, y2, y3, … , yn . bik is the likelihood of the observation. yn =

yk in state sn = si at time n.

2.4 Maximum Likelihood Estimation Algorithm

Maximum likelihood algorithm is used to calculate the model parameters. Model

parameters include choosing λ = (π, A, B) where π is the initial probabilities of states, A

is the transition matrix calculating the transition probabilities and B is the emission

matrix calculating the emission probabilities. Tag file is given as input to calculate these

model parameters. Using the tag file, MLE algorithm calculates the count of transitions

from one state to other state and also emission of a symbol by a state at time t. Emission

probabilities and transition probabilities are calculated using the count of transitions and

emissions. As probabilities are calculated using training data, MLE algorithm is called

supervised training.

Aij = Number of transitions from state si to state sj in the training data

 Total number of transitions from state si in the training data

Bi(j) = Number of emissions of symbol j from state si in the training data

 Total number of emissions from state si in the training data

www.manaraa.com

10

2.4.1 Smoothing

During the calculation of Aij (Transition probabilities) and Bi(j) (Emission probabilities),

there might not be transitions and emissions for some of the states which results in zero

probabilities. Zero probabilities cause the problems in the mathematical calculations. To

avoid this problem smoothing techniques are used. Some of the smoothing techniques are

 Absolute Discounting

 Laplace Smoothing

 Good-Turing Estimation

 Shrinkage

2.4.1.1 Laplace Smoothing

In this thesis we use Laplace smoothing to assign the probabilities with zero emission and

transition probabilities. Laplace smoothing is known as add-on smoothing technique. In

this smoothing technique, one is added to the numerator and vocabulary size is added to

the denominator.

P(X | S) = N(X | S) + 1

 N(S) + |V|

Where N(X | S) is the number of times symbol X is emitted at state S

N(S) is the number of times symbols emitted by state S.

|V| = Vocabulary size

www.manaraa.com

11

Example: If you throw a dice 6 times and each time the score on the dice is 5. So the

probability of dice showing 2 is zero. In this situation we use Laplace smoothing to

assign a probability of dice showing 2.

P(2 | 6) = N(2 | 6) + 1

 N(6) + |V|

 = (0 + 1) / (6 + 6)

 = 0.08

Where N(2 | 6) = Number of times dice showing 2 of 6 chances

N(6) = Number of times dices was showing a number during 6 chances

|V| = Vocabulary size

The probability of showing 2 on dice out of 6 chances is zero previously and after

Laplace smoothing the value has changed to 0.08.

2.5 OCR Error Classifications

Some characters are misrecognized during the scanning of a document to editable format

using OCR device. These misrecognized characters are called OCR errors. OCR errors

are classified based on the errors occurred due to insertion, deletion and substitution

errors.

a. Insertion errors: These types of errors are occurred when there is no actual

character but during the scanning process a character is inserted.

www.manaraa.com

12

b. Deletion errors: These types of errors are occurred when there is a character but

during the scanning process the character is deleted.

c. Substitution errors: These types of errors are occurred when there is a character

but during the scanning process the actual character is replaced with some other

character.

Substitution errors are further divided based on the number of characters substituted.

They are

i. One to one: One character is replaced with one character

ii. Two to one: Two characters are replaced with a single character

iii. One to two: One character is replaced with two characters.

Some of the OCR errors are shown below:

S. No Actual Character OCR recognized

(OCR error)

1 f t

2 r x

3 ll u

4 ci d

5 l f

6 iu ur

7 g c

8 u o

www.manaraa.com

13

9 f l

10 v r

11 h b

12 el d

Table 1: Some of the OCR Errors

2.6 HMM Example

2.6.1 Weather Prediction Experiment

According to Rabiner, the three types of weather considered are: “Sunny (S), Rainy (R)

and Foggy (F)” [6]. We want to do weather prediction i.e., predicting the weather of

tomorrow based on the observations in the past. Statistics are collected based on the

weather like today (day n) depending on the weather of yesterday (day n-1), the day

before (day n-2) etc., state qn is associated to day n and qn-1 to day n-1.

Suppose we have statistics for the weather for 3 days: sunny, sunny, and foggy. The

probability of tomorrow being rainy is calculated by P(q4 = R | q3 = F, q2 = S, q1 = S).

This could be inferred from the relative frequencies from the past observations of weather

sequences “S S F R”. Statistics can be collected for small data easily, but as the number

increase the data also increases. Suppose n = 7 then we need to collect 3
7-1

 = 729 past

observations.

This can be solved by first order Markov assumption. Assumption is such that

P(q1, q2, q3, … , qn-1, qn) = P(q1, q2, … ,qn-1) P(qn|qn-1, qn-2, …. , q1)

Experiment: Suppose a person is locked in a room for several days and was asked to

www.manaraa.com

14

predict the weather outside. The only evidence is that a person who comes in to the room

bringing daily meals to the person in the room is carrying an umbrella or not. Suppose the

person in the room has the probabilities:

Weather Probability of carrying umbrella

Sunny 0.1

Rainy 0.8

Foggy 0.3

Table 2: Probabilities of carrying umbrella on different weather

 Here, actual weather is hidden. We need to find the probability of certain weather. qi =

{S, R, F} can only be based on P(xi | qi) = P(U | qi) on the observation xi with xi = U (if

the person who brings the food brought an umbrella) and xi = N (otherwise).

By Baye‟s theorem P (qi | xi) = p(xi | qi) p(qi)

 p(xi)

P(q1, q2, … , qn | x1, x2, … , xn) = P(x1, x2, … , xn | q1, q2, …qn) P(q1, q2,…qn)

 P(x1, x2, … , xn)

Using Markov assumption,

= P(x1, x2, … , xn | q1, q2, …qn) can be estimated by πi=1 to nP(x1 | qi)

In general,

 P(q1, q2, … , qn | x1, x2, … , xn) = _ (q1, q2, … , qn | x1, x2, … , xn) =

πi=1 to nP(xi | qi) πi=1 to nP(qi | qi-1)

www.manaraa.com

15

Question: Suppose the day the person locked in the room was sunny. The next day, the

person who brings food carried an umbrella. What is the weather like on this 2
nd

 day?

Solution:

_(q2 = S |q1 = S, x2 = U) = P(x2 = U | q2 = S) * P(q2 =S|q1 =S)

 = 0.1 * 0.8

 = 0.08

_(q2 = R |q1 = S, x2 = U) = P(x2 = U | q2 = R) * P(q2 =R|q1 =S)

 = 0.8 * 0.05

 = 0.04

_(q2 = F |q1 = S, x2 = U) = P(x2 = U | q2 = F) * P(q2 =F|q1 =S)

 = 0.3 * 0.15

 = 0.045

S F

R

0.8
0.5

0.6

0.15

0.2

0.3

0.2

0.05

0.2

U = 0.3

N = 0.7

U = 0.1

U = 0.8

N = 0.2

N = 0.9

Figure 2: Example showing state transition diagram

www.manaraa.com

16

Based on the calculations above, the highest probability is observed when state is sunny.

Even though the person carried an umbrella, the weather is sunny based on the

calculations of probabilities and history provided. In the above example, states (actual

weather) are hidden and based on the previous history; the observation sequence is found

using first order hidden markov model.

www.manaraa.com

17

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this thesis, we train HMM with OCR data. The code is written in Java language to

implement the MLE algorithm and Viterbi algorithm. Our HMM model has 26 states: a-z

alphabets. In our thesis, training and decoding steps of HMM are implemented. The tag

file given to HMM during training consists of OCR error data and correct data. Then as a

part of the decoding step, a test file is given with the OCR error data to correct the OCR

errors. In order to train and test our model, we have taken a book form online (Notes on

witchcraft by George Lyman Kittredge) consisting of 60 pages. We have collected the

OCR version and correct version of the book. For training, we have used 55 pages

(159,733 characters) and 5 pages (5688 characters) are used for testing. Errors in the

OCR version of book are listed in the appendix.

Our code implementation has 3 files: Main file, MLE algorithm implementation and

Viterbi algorithm implementation. During the process, two files with OCR error data and

correct data are given as input to the main file. The data is preprocessed and a tag file is

created. The tag file is then given as input to MLE algorithm implementation. The output

of MLE algorithm implementation is the model file consisting of initial probabilities,

emission probabilities and transition probabilities. The model file, which is the output of

MLE algorithm implementation and a test file consisting of OCR error data are sent as

input to Viterbi algorithm. Based on the probabilities in the model file, the most likely

sequence path for the test file is generated as output for the HMM model. The more the

www.manaraa.com

18

training data, the probabilities for transition of states are recorded and improves the

performance of HMM for correcting the errors.

3.1 Preprocessing Data

During the preprocessing step, OCR error data and correct data are taken. This data is

preprocessed such that the data consisting of special characters (*, $ etc.,) and numbers

are deleted and formatted to align correctly in the tag file.

Sample input text that is used for training purpose is shown below. This training data is

used to create a tag file. All the special characters are removed during this step.

 Correct data

Figure 3: Screenshot of sample correct data

www.manaraa.com

19

 OCR error data

Figure 4: Screenshot of sample OCR error data

After the preprocessing step, the tag file is created. Correct text data are states and the

OCR error data are taken as corresponding symbols to the states.

The sample tag file is shown below:

Figure 5: Screenshot of sample tag file

www.manaraa.com

20

3.2 Learning Module

The main objective of this module is to use the Maximum Likelihood algorithm to get the

initial probabilities, emission probabilities and transition probabilities. Three hash table

data structures are used to store theses three variables. MLE algorithm implementation

takes the input as tag file and calculates the model parameters λ = (π, A, B) where π is the

initial probabilities for the states, A represents the transition probabilities and B

represents the emission probabilities. The hash table is used to store the initial

probabilities in our code. The initial probabilities are assigned to each state with some

probabilities. Based on the tag file, the initial probability for start state is assigned a

higher probability than the other states. Initial probabilities are assigned to the states by

dividing the probabilities with the number of states in the model.

Transition probabilities are calculated based on the state‟s transitions to other states at a

time (t). In our code, the probabilities are calculated by storing the occurrences of

transitions from state si to state sj in a hash table data structure. If the transition of

occurrence has already been calculated, then a value is added to the present occurrence

and a new probability is re-calculated. Transition probabilities are calculated as the

number of transitions from state si to sj divided by the total number of transitions of state

si. . These transitions are calculated using the correct data.

The transition probabilities are calculated using the tag file. The characters to the left in

the tag file are the states and the characters to the right are symbols. Each line is parsed

one at a time; for transition probabilities, only the states are considered. Counters are set

up to keep track of the number of times each state (a-z) is transited to state (a-z)

www.manaraa.com

21

combination. Every time the combination is repeated the counter is incremented by 1 and

stored in the hash table or else new entry is added in the hash table.

The emission probabilities are calculated based on the emissions of the symbols by states.

In our code we count the number of occurrences of emissions of each symbol by a state

in a hash table and check each line in the tag file and add a value if the same symbol by a

same state occurs or else new entry is added in the hash table. Emission probabilities are

calculated by the number of emissions of a symbol „o‟ with state „si‟ divided by the

number of emissions from the state „si‟.

Initial probabilities, transition probabilities and emission probabilities are calculated and

stored in a model file. The output for the MLE algorithm implementation is the model file

which stores the initial probabilities, transition probabilities and emission probabilities.

The model file has the probabilities of each state transition and the symbol emission from

the state. The model file in our model has following: states, initial probabilities for states,

emission probabilities and transition probabilities. States are a-z (26 characters). The

initial probabilities are assigned by dividing with 26 and the start state is assigned more

probability based on the tag file.

During these calculations, some of the emission probabilities are assigned a zero

probability as they are not seen in the training data which causes problems in further

calculations. To avoid this problem we used smoothing technique discussed in the

chapter 2.

www.manaraa.com

22

3.3 Decoding Module

The main goal of this module is to find the most likely sequence path for the test file,

which is given as input. The viterbi algorithm is used to find the most likely sequence

path. The input parameters for viterbi algorithm implementation are taken from the model

file, which is the output from MLE algorithm implementation. “Argmax” and “valmax”

parameters are calculated using the recursion step to find the most likely sequence of

states for a given observation sequence. Logarithmic calculations are used for the

multiplication of numbers as the probabilities of multiplications of the numbers are very

minute. In our code, we have two variables: argmax, which is a string data type to store

the trellis path and valmax to store the values calculated in each iteration step.

The start probabilities of every state are calculated by the step: T[i].pr = log10 (Init[i]) +

log10 (B[i]) where Init[i] is the probability that i is in the start state and B[i] is the

emission probability associated with state i.

A for loop is used for the recursive step. The recursive step is implemented to find the

most likely sequence using the formula:

Path = T[i].pr + log10 (A[i][j]) + log10 (B[i]) where T[i] is the probability of current

path till state i and A[i][j] is the transition probability from state i to state j. B[i] is same

as stated above.

While loop is used to perform the calculations till the end of the file and the output

generated is the most likely sequence path of the test file.

www.manaraa.com

23

3.4 Main file

The program implementation starts from main file. The two files with the OCR error data

and correct data are given as inputs to the main file. The pre-processed data is generated.

Objects for MLE class and viterbi class are created. The tag file is given as input variable

to create a model file. The parameters from the model file such as emission probabilities,

transition probabilities, start probabilities and states are given to viterbi. Viterbi is then

processed with the observation sequence file (test file) and output is stored in corrected

file.

www.manaraa.com

24

CHAPTER 4

EXPERIMENTS AND RESULT

This chapter explains the experiments conducted with our HMM model and the results

obtained. For training our HMM model, we have taken a book from online (Notes on

witchcraft by George Lyman Kittredge) consisting of 60 pages. Out of 60 pages, we have

used 55 pages (159,733 characters) for training and 5 pages for testing (5688 characters).

Each page out of 5 pages is used for 5 test cases.

Page and character count for each test file is tabulated below:

File Number of pages character count

File 1 1 913

File2 1 887

File3 1 757

File4 1 966

File5 1 1002

Table 3: Table showing the character count for the test files

Performance of HMM is evaluated by standard measures: Recall and Precision. Recall

and precision are calculated using Truth Positive, Truth Negative, False Positive, and

False Negative.

True Positive: These are the number of misspelled characters that are identified by the

system and corrected.

www.manaraa.com

25

True Negative: These are the number of correct characters that are identified by the

system and remain the same.

False Positive: These are the number of correct characters that are changed and wrongly

spelled by the system.

False Negative: These are the number of misspelled characters that are not corrected by

the system.

Precision = True Positive

 True Positive + False Positive

Recall = True Positive

 True Positive + False Negative

Results of each file are tabulated below:

Our HMM model was able to recognize and correct 4 out of 34 misspelled characters.

Average Recall = 10.16 %

Test File

(characters)

TN

FP

TP

FN

Recall

TP/(TP+FN)

Precision

TP/(TP+FP)

File 1 (913) 904 0 1 8 11.11% 100.00%

File 2 (887) 880 0 2 5 28.57% 100.00%

File 3 (757) 748 0 1 8 11.11% 100.00%

File 4 (966) 961 0 0 5 0.00% 100.00%

File 5

(1002)

997 0 0 4 0.00% 100.00%

Average 10.16% 100.00%

Table 4: Results showing the Recall and Precision for each test file

www.manaraa.com

26

Average Precision = 100.00 %

Word Accuracy is used as another measure for the performance measure of HMM for

correcting the OCR error data. Word Accuracy is determined as defined by [5]

Word Accuracy = Number of words recognized correctly

 Total number of words

Word accuracy for each test case is tabulated below:

File Total

no. of words

No. of words

recognized correctly

Word

Accuracy

File1 201 193 96.02%

File2 174 169 97.13%

File3 154 146 94.81%

File4 206 201 97.57%

File5 198 194 97.78%

Total(File1-File5) 933 903 96.78%

Word Accuracy before correcting errors = Number of words recognized correctly

 Total number of words

 = 899/933

 = 96.36 %

Word Accuracy after correcting errors = 96.78 %

www.manaraa.com

27

Our HMM was able to increase 0.42 % word accuracy with a recall of 10.16% and

precision of 100 %. Based on the training provided, HMM was able to correct the errors

which are seen most in the training data.

Our 1
st
 order HMM was able to detect and correct 11.76% (4 out of 34) errors and

precision is 100% as it is not introducing any new errors.

www.manaraa.com

28

CHAPTER 5

CONCLUSION AND FUTURE WORK

The objective of this thesis is to use HMM to correct the errors generated during the OCR

scanning process. We designed the HMM, implemented the Maximum Likelihood

Algorithm and the Viterbi Algorithm. The experiments we conducted have 55 pages of

data for training and 5 pages for testing. The results obtained show that the 1
st
 order

HMM model was able to correct very few errors with a recall of 10.16% and precision of

100%.

In future work, we can implement the 2
nd

 order HMM model where bi- grams are used to

calculate the transition probabilities and the emission probabilities. The results of 1
st

order HMM model can be compared with 2
nd

 order HMM and the model that gives the

best results can be used for correcting the OCR errors.

www.manaraa.com

29

APPENDIX

This Appendix provides all the misspelled characters that are recorded in the OCR

version of the online book “Notes on witchcraft by George Lyman Kittredge”. Table

below shows the errors and the number of times the error had occurred in the book.

Error Occurrence

b -> e 1

r->s 2

h->ii 1

m->ni 5

al->ri 1

um->im 2

rm->nn 4

g->s 3

el->d 2

is->d 2

ll->u 2

ri->ii 3

r->ir 2

y->rs 1

s->nd 1

f->t 4

a->u 3

ci->d 2

rn->m 2

l->f 2

t->l 1

r->x 5

z->s 2

a->z 4

in->m 2

c->e 7

r->l 3

f->t 2

f->l 1

iu ->ur 1

h -> b 2

g ->c 3

rc ->n 1

y -> j 1

a -> u 2

www.manaraa.com

30

Error Occurrence

v -> r 1

r -> e 2

e-> r 2

el -> ri 1

x->z 2

u->o 1

v -> y 1

in ->m 1

l -> j 2

e -> t 2

f ->i 5

a-> o 10

l-> i 8

n -> m 3

e -> u 1

l -> i 1

m -> x 1

y -> jr 1

u -> y 1

g -> s 1

e -> r 1

t -> i 2

y -> s 1

si -> m 1

a -> f 1

r -> i 1

nr -> m 1

s -> i 1

c -> o 2

l -> i 2

o -> c 1

in -> m 1

m -> n 2

x -> i 3

v -> u 2

j -> i 1

e -> o 1

f -> i 1

in -> m 2

im -> un 1

ir -> n 1

i -> l 1

a -> c 1

www.manaraa.com

31

Error Occurrence

a ->e 1

c -> o 1

n -> ii 3

ii -> n 2

im -> un 1

g -> s 1

v -> y 1

s -> a 2

r ->x 3

f -> l 1

u->i 1

m -> n 1

r -> d 1

s -> e 1

a -> o 3

l -> n 1

u -> v 1

v -> u 1

e -> o 1

f -> i 1

u -> m 1

h -> i 1

il -> u 1

hi -> tu 1

rn -> m 2

ii -> ni 1

ii -> ri 1

on->cm 1

ek->dc 1

sc -> ao 1

um -> im 1

si -> no 1

iu -> ur 1

re -> fc 1

el -> ri 1

im - > un 1

www.manaraa.com

32

BIBILOGRAPHY

[1] Shai Fine, Yoram Singer and Naftali Tishby, “The Hierarchical Hidden Markov

Model: Analysis and Applications”, Machine Learning , Volume 32, Issue 1,(1998), 41–

62, Springer Netherlands, DOI: 10.1023/A:1007469218079,

[2] Lou, H.-L., "Implementing the Viterbi algorithm," Signal Processing Magazine,

IEEE, Volume 12, number 5, pages 42-52, Sep 1995, doi:10.1109/79.410439,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=410439&isnumber=917

http://dx.doi.org/10.1023/A:1007469218079

[3] “Hidden Markov Model”. Wikipedia, The Free Encyclopedia, Inc 18 July, 2012.

http://en.wikipedia.org/wiki/Hidden_Markov_model

[4] Guy Leonard Kouemou, Dr. Przemyslaw Dymarski (Ed.), “History and Theoretical

Basics of Hidden Markov Models”, Hidden Markov Models, Theory and Applications,

2011, ISBN:978-953-307-208-1, http://www.intechopen.com/books/hidden-markov-

models-theory-and-applications/history-and-theoretical-basics-of-hidden-markov-models

[5] Thomas A. Nartker and Stephen V. Rice. OCR accuracy: UNLV‟s third annual test.

INFORM, 8(8):30-36, September 1994

[6] Lawrence R Rabiner, “A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition”, Proceedings of the IEEE, Volume 77, No. 2, pp.

257-286, February 1989

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=410439&isnumber=917
http://dx.doi.org/10.1023/A:1007469218079
http://en.wikipedia.org/wiki/Hidden_Markov_model

www.manaraa.com

33

[7] Kazem Taghva, Russell Beckley and Jeffrey Coombs, “The Effects of OCR Error on

the Extraction of Private Information,” Document Analysis Systems 2006: 348-357

[8] Kazem Taghva, Jeffrey Coombs, Ray Pereda and Thomas Nartker, “Address

Extraction Using Hidden Markov Models”, Proc. IS&T/SPIE 2004 Intl. Symp. on

Electronic Imaging Science and Technology

[9] Kazem Taghva, Julie Borsack, Allen Condit, and Srinivas Erva. “The Effects of

Noisy Data on Text Retrieval”. J. Am. Soc. Inf. Sci. 45, 1 (January 1994), 50-58.

DOI=10.1002/(SICI)1097-4571(199401)45:1<50::AID-ASI6>3.0.CO;2-B

http://dx.doi.org/10.1002/(SICI)1097-4571(199401)45:1<50::AID-ASI6>3.0.CO;2-B

[10] Kazem Taghva, Julie Borsack, and Allen Condit. “Evaluation of model-based

retrieval effectiveness with OCR text”, ACM Transactions on Information System,

volume 14, Issue 1 (January 1996), 64-93, DOI = 10.1145/214174.214180,

http://doi.acm.org/10.1145/214174.214180

[11] Kazem Taghva and Eric Stofsky. “OCRSpell: An Interactive Spelling Correction

System for OCR Errors in Text”, International Journal of Document Analysis and

Recognition, 2001, Volume 3, Pages-2001.

www.manaraa.com

34

VITA

Graduate College

University of Nevada, Las Vegas

Spandana Malreddy

Degrees:

 Bachelor of Engineering in Computer Science, 2009

 Jawaharlal Nehru Technological University

Thesis Title: Post Processing of Optically Recognized Text Using First Order

 Hidden Markov Model

Thesis Examination Committee:

 Chair Person, Dr. Kazem Taghva, Ph.D.

 Committee Member, Dr. Ajoy K. Datta, Ph.D.

 Committee Member, Dr. Laxmi P. Gewali, Ph.D.

 Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

	Post Processing of Optically Recognized Text using First Order Hidden Markov Model
	Repository Citation

	tmp.1374277684.pdf.zHwxP

